Dispersion relations for $\gamma^* \gamma^* \to \pi \pi$

Peter Stoffer

Physics Department, UC San Diego

in collaboration with M. Hoferichter

JHEP 1907, 073 (2019) [arXiv:1905.13198 [hep-ph]]

and with G. Colangelo, M. Hoferichter, and M. Procura

JHEP **04** (2017) 161, [arXiv:1702.07347 [hep-ph]]
Phys. Rev. Lett. **118** (2017) 232001, [arXiv:1701.06554 [hep-ph]]
and work in progress

12th September 2019

Third Plenary Workshop of the Muon g-2 Theory Initiative INT, University of Washington, Seattle

1

Outline

- 1 Dispersive approach to HLbL
- 2 $\pi\pi$ -rescattering: S-waves
- 3 $\pi\pi$ -rescattering: D-waves
- 4 Conclusion and outlook

Overview

- 1 Dispersive approach to HLbL
- $2\pi\pi$ -rescattering: S-waves
- $3 \pi\pi$ -rescattering: D-waves
- 4 Conclusion and outlook

Reminder: BTT Lorentz decomposition

Lorentz decomposition of the HLbL tensor:

→ Bardeen, Tung (1968) and Tarrach (1975)

$$\Pi^{\mu\nu\lambda\sigma}(q_1,q_2,q_3) = \sum_i T_i^{\mu\nu\lambda\sigma} \Pi_i(s,t,u;q_j^2)$$

- · Lorentz structures manifestly gauge invariant
- scalar functions Π_i free of kinematic singularities
 - ⇒ dispersion relation in the Mandelstam variables

- write down a double-spectral (Mandelstam) representation for the HLbL tensor
- split the HLbL tensor according to the sum over intermediate (on-shell) states in unitarity relations

$$\Pi_{\mu\nu\lambda\sigma} = \Pi_{\mu\nu\lambda\sigma}^{\pi^0\text{-pole}} + \Pi_{\mu\nu\lambda\sigma}^{\mathsf{box}} + \Pi_{\mu\nu\lambda\sigma}^{\pi\pi} + \dots$$

- write down a double-spectral (Mandelstam) representation for the HLbL tensor
- split the HLbL tensor according to the sum over intermediate (on-shell) states in unitarity relations

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^0\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\text{box}}_{\mu\nu\lambda\sigma} + \Pi^{\pi\pi}_{\mu\nu\lambda\sigma} + \dots$$

one-pion intermediate state

5

- write down a double-spectral (Mandelstam) representation for the HLbL tensor
- split the HLbL tensor according to the sum over intermediate (on-shell) states in unitarity relations

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^0\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathsf{box}}_{\mu\nu\lambda\sigma} + \Pi^{\pi\pi}_{\mu\nu\lambda\sigma} + \dots$$

two-pion intermediate state in both channels

- write down a double-spectral (Mandelstam) representation for the HLbL tensor
- split the HLbL tensor according to the sum over intermediate (on-shell) states in unitarity relations

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^0\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathsf{box}}_{\mu\nu\lambda\sigma} + \Pi^{\pi\pi}_{\mu\nu\lambda\sigma} + \dots$$

two-pion intermediate state in first channel

- write down a double-spectral (Mandelstam) representation for the HLbL tensor
- split the HLbL tensor according to the sum over intermediate (on-shell) states in unitarity relations

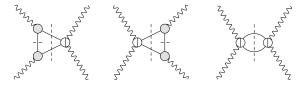
$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^0\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathsf{box}}_{\mu\nu\lambda\sigma} + \Pi^{\pi\pi}_{\mu\nu\lambda\sigma} + \dots$$

higher intermediate states

Resonance contributions to HLbL?

- unitarity: resonances unstable, not asymptotic states
 ⇒ do not show up in unitarity relation
- analyticity: resonances are poles on unphysical Riemann sheets of partial-wave amplitudes
 ⇒ describe in terms of multi-particle intermediate states that generate the branch cut
- here: resonant $\pi\pi$ contributions in S-wave (f_0) and D-wave (f_2)
- resonance model-independently encoded in $\pi\pi$ -scattering phase shifts

Rescattering contribution

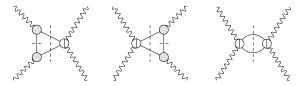


- neglect left-hand cut due to multi-particle intermediate states in crossed channel
- two-pion cut in only one channel:

$$\begin{split} \Pi_i^{\pi\pi} &= \frac{1}{2} \left(\frac{1}{\pi} \int_{4M_\pi^2}^\infty dt' \frac{\mathrm{Im} \Pi_i^{\pi\pi}(s,t',u')}{t'-t} + \frac{1}{\pi} \int_{4M_\pi^2}^\infty du' \frac{\mathrm{Im} \Pi_i^{\pi\pi}(s,t',u')}{u'-u} \right. \\ &\qquad \qquad + \mathrm{fixed-}t \\ &\qquad \qquad + \mathrm{fixed-}u \bigg) \end{split}$$

7

Rescattering contribution



- expansion into partial waves
- unitarity gives imaginary parts in terms of helicity amplitudes for $\gamma^*\gamma^{(*)} \to \pi\pi$:

$$\operatorname{Im}_{\pi\pi} h^J_{\lambda_1\lambda_2,\lambda_3\lambda_4}(s) \propto \sigma_{\pi}(s) h_{J,\lambda_1\lambda_2}(s) h^*_{J,\lambda_3\lambda_4}(s)$$

- · framework valid for arbitrary partial waves
- resummation of PW expansion reproduces full result: checked for pion box

Overview

- Dispersive approach to HLbL
- **2** $\pi\pi$ -rescattering: S-waves
- 3 $\pi\pi$ -rescattering: D-waves
- 4 Conclusion and outlook

Topologies in the rescattering contribution

Our *S*-wave solution for $\gamma^* \gamma^* \to \pi \pi$:

Two-pion contributions to HLbL:

$$=\underbrace{\frac{1}{2}\sum_{x_1,x_2,\dots,x_n}\sum_{x_n,x_n}\sum_{x$$

The subprocess

Omnès solution of unitarity relation for $\gamma^*\gamma^* \to \pi\pi$ helicity partial waves:

$$h_i(s) = \Delta_i(s) + \frac{\Omega_0(s)}{\pi} \int_{4M_\pi^2}^{\infty} ds' \frac{K_{ij}(s, s') \sin \delta_0(s') \Delta_j(s')}{|\Omega_0(s')|}$$

- $\Delta_i(s)$: inhomogeneity due to left-hand cut
- $\Omega_0(s)$: Omnès function with $\pi\pi$ S-wave phase shifts $\delta_0(s)$ as input
- $K_{ij}(s,s')$: integration kernels
- S-waves: kernels emerge from a 2×2 system for $h_{0,++}$ and $h_{0,00}$ and two scalar functions $A_{1,2}$

S-wave rescattering contribution

- pion-pole approximation to left-hand cut $\Rightarrow q^2$ -dependence given by F_π^V
- phase shifts based on modified inverse-amplitude method ($f_0(500)$ parameters accurately reproduced)
- result for S-waves: $a_{\mu,J=0}^{\pi\pi,\pi\text{-pole LHC}}=-8(1)\times 10^{-11}$

Overview

- Dispersive approach to HLbL
- $2\pi\pi$ -rescattering: S-waves
- **3** $\pi\pi$ -rescattering: D-waves
- 4 Conclusion and outlook

Extension to D-waves \rightarrow JHEP 1907, 073 (2019)

- D-waves describe $f_2(1270)$ resonance in terms of $\pi\pi$ rescattering
- inclusion of higher left-hand cuts (ρ , ω resonances) necessary to reproduce observed $f_2(1270)$ resonance peak in on-shell $\gamma\gamma\to\pi\pi$
- NWA for vector resonance LHC with $V\pi\gamma$ interaction

$$\mathcal{L} = eC_V \epsilon^{\mu\nu\lambda\sigma} F_{\mu\nu} \partial_{\lambda} \pi V_{\sigma}$$

- coupling C_V related to decay width $\Gamma(V \to \pi \gamma)$
- off-shell behaviour described by resonance transition form factors $F_{V\pi}(q^2)$

Topologies in the Omnès solution

Omnès solution for $\gamma^*\gamma^* \to \pi\pi$ with higher left-hand cuts provides the following:

Modified Omnès representation

→ García-Martín, Moussallam 2010

$$h_i(s) = N_i(s) + \frac{\Omega(s)}{\pi} \left\{ \int_{-\infty}^0 ds' \frac{K_{ij}(s, s') \operatorname{Im} h_j(s')}{\Omega(s')} + \int_{4M_{\pi}^2}^{\infty} ds' \frac{K_{ij}(s, s') \sin \delta(s') N_j(s')}{|\Omega(s')|} \right\}$$

- $N_i(s)$: only Born term as inhomogeneity
- higher left-hand cuts in first dispersion integral: only imaginary part required
- $K_{ij}(s,s')$: integration kernels from the full 5×5 D-wave Roy–Steiner system, diagonalisable by basis change

Modified Omnès representation

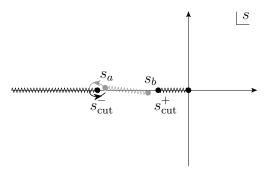
- → García-Martín, Moussallam 2010
- sum rules for subtraction constants almost fulfilled
 unsubtracted DR with small adjustment of LHC couplings to account for higher intermediate states
 - → also done in Danilkin, Vanderhaeghen 2017
- assumption on asymptotic behaviour:

$$\frac{h(s) - N(s)}{\Omega(s)} \asymp \frac{1}{s}$$

 bad high-energy behaviour of real part of resonance LHC explains the need for subtraction in standard Omnès representation

Anomalous thresholds for large space-like q_i^2

Left-hand cut structure of resonance partial waves:

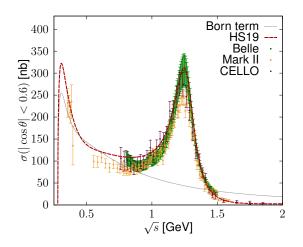


- two logarithmic branch cuts $(-\infty, s_{\text{cut}}^-], [s_{\text{cut}}^+, 0]$
- square-root branch cut on second sheet, but extends into the physical sheet for $q_1^2q_2^2>(M_R^2-M_\pi^2)^2$

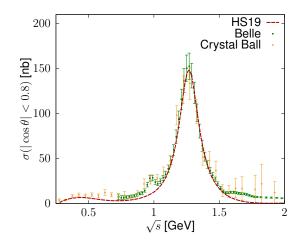
Anomalous thresholds for large space-like q_i^2

- deformation of integration contour for $q_1^2q_2^2>(M_R^2-M_\pi^2)^2$
- anomalous singularity s_a behaves for some D-wave contributions like $(s_a-s)^{-7/2}$
- contour integral around s_a does not vanish and makes result finite
- cancellation performed analytically, avoiding numerical instabilities

On-shell results: $\gamma \gamma \to \pi^+ \pi^-$



On-shell results: $\gamma\gamma \to \pi^0\pi^0$



Doubly-virtual results

- all technical issues with D-waves solved
- D-wave solution expressed in terms of $V\pi\gamma^*$ transition form factors
- asymptotic ω TFF behaviour $\sim 1/Q^4$
 - → Farrar, Jackson 1975
- dispersive representation for space-like ω/ρ TFFs via $\pi^0 \to \gamma^* \gamma^*$
 - → with M. Hoferichter, B.-L. Hoid, B. Kubis, work in progress

Contribution to a_{μ}^{HLbL}

resonance box is UV divergent

- modified Omnès representation cures UV behaviour for sum of resonance LHC and rescattering
- compute D-wave contribution to a_{μ}^{HLbL} in one go
- numerics in progress...

Overview

- ① Dispersive approach to HLbL
- $2\pi\pi$ -rescattering: S-waves
- $3 \pi\pi$ -rescattering: D-waves
- 4 Conclusion and outlook

Conclusion and outlook

• precise prediction for S-wave $\pi\pi$ -rescattering contribution with pion-pole left-hand cut:

$$a_{\mu,J=0}^{\pi\pi,\pi\text{-pole LHC}} = -8(1)\times 10^{-11}$$

- technical problems for D-wave reconstruction solved: inclusion of heavier LHCs, anomalous thresholds, asymptotic behaviour
- upcoming BESIII data allow extraction of presently unknown space-like TFF → talk by Ch. Redmer
- D-wave contribution to a_{μ} work in progress
- compare to narrow-width approximation of $f_2(1270)$

"Dispersion relations are always true!"

Arkady Vainshtein, 11th September 2019